If it's not what You are looking for type in the equation solver your own equation and let us solve it.
18^2+18^2=x^2
We move all terms to the left:
18^2+18^2-(x^2)=0
We add all the numbers together, and all the variables
-1x^2+648=0
a = -1; b = 0; c = +648;
Δ = b2-4ac
Δ = 02-4·(-1)·648
Δ = 2592
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2592}=\sqrt{1296*2}=\sqrt{1296}*\sqrt{2}=36\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-36\sqrt{2}}{2*-1}=\frac{0-36\sqrt{2}}{-2} =-\frac{36\sqrt{2}}{-2} =-\frac{18\sqrt{2}}{-1} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+36\sqrt{2}}{2*-1}=\frac{0+36\sqrt{2}}{-2} =\frac{36\sqrt{2}}{-2} =\frac{18\sqrt{2}}{-1} $
| 2u3u=45 | | 7/4=n/2 | | 30/0.5=y/0.52 | | 35=5x-8 | | x-0.15x=66 | | (10x-2)=7x | | 84=6x-6 | | 1/6x-19=1/2 | | a^2+8^2=15^2 | | 1/6x-19=1/2(8)*4 | | -22-9c=2c | | a^2+8=14 | | 3(2m+4)=36 | | 25=3v-7v | | -1.4m=2.8 | | 6084=c^2 | | 3b+4=4b-5 | | E=-2p+160 | | -4t=-48 | | -5a-2+4a=-28 | | -28-5h=-4(3h-7) | | 50÷5+3∙4÷2-1=x | | C(x)=40.25-0.05 | | 4x+3x-4=34 | | 2x+-3x+5=6 | | 4^(x-8)=9 | | 6x+2x+2x=18- | | 7÷2=r÷r-15 | | 6x+2x+3x=180 | | (5u+8)(7-u)=0 | | 5=2(m-3) | | -5x+10=6x54 |